
nature machine intelligence

https://doi.org/10.1038/s42256-025-01048-0Article

Learning vision-based agile flight via 
differentiable physics

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s42256-025-01048-0


Table of Contents

The supplementary information in this document includes:
Supplementary Notes 1-3
Supplementary Figures 1-5
Supplementary Tables 1-3

Other supplementary information includes:
Supplementary Videos 1-9

1



Note 1 Calibration and system identification

For the effective training of our quadrotor navigation framework, it’s pivotal that our
simulations mimic real world flight dynamics accurately. The primary goal of calibra-
tion is to identify the parameters of our differentiable physics simulation, ensuring
that simulated dynamics mirror real world quadrotor responses. Calibration involves
adjusting for control latency and air drag.

1.1 Control latency identification

Our simulation considers a fixed control latency and an exponential moving average
for modeling the flight controller response. We fix the proportional attitude controller
with an attitude control gain of 13. We collect 6 seconds of real world flight data and
replay it with our latency model in simulation. We perform calibration experiments on
roll and pitch response to measure the latency parameters λ, τ , yielding an estimate
of λ = 12, τ = 1/15. Supplementary Fig. 1a,b shows the simulated roll and pitch
responses closely match the real world responses.

Measuring thrust in the real world is more challenging because the acceleration
measurements are mixed with gravity, air drag, and non-linear thrust model. Never-
theless, we have verified that the delay parameters for roll and pitch are applicable for
thrust as well. Results from Supplementary Fig. 1c shows that our simulation aligns
closely with the real world thrust delay.

We have verified the consistency of this latency across several platforms, provided
the attitude control gain remains uniform: a) our platform shown in Fig. 2a using
BetaFlight; b) a larger 0.6 kg drone with 4-inch propellers also using BetaFlight; c)
a 1.2 kg drone with 5-inch propellers running a PX4 controller; d) the AirSim [1]
simulator; e) the Flightmare [2] simulator.

a Roll response b Pitch response c Thrust response

Supplementary Fig. 1: Flight control response in simulation. The simulation
closely mirrors our real drone, demonstrating the accuracy of our calibration.

1.2 Air drag identification

In low-speed navigation, air drag is frequently overlooked. However, for high-speed sen-
sorimotor flights, it’s a critical factor. At speeds exceeding 9m/s, our 3-inch quadrotor

2



b Mean absolute speed error (m/s) vs. air drag parametersa Simulated vs. measured speed in a real-world flight

𝜃 !

𝜃"

Supplementary Fig. 2: The simulated flight velocity vs. our real drone. (a)
We record actions from real world flights and replay it in simulation. The relatively
small difference between the simulation and the real drone shows the fidelity of our air
drag simulation. (b) We conduct a grid search for air drag parameters that minimize
absolute speed error between simulation and real world flights.

(refer to Fig. 2a) with propeller guards encounters considerable air resistance, mea-
suring over 5m/s2. With fixed agent actions, air drag largely dictates the flight speed.
For localization-free flights, air drag plays a primary role in the implicit estimation of
velocity.

Air drag varies depending on the platform. To calibrate it, we’ve employed a
straightforward method. We record 1 minute of outdoor flight data, including the
acceleration control commands and actual flight speeds, and replay these in simula-
tion using the drag model adrag = −θ1∥v∥v − θ2v, where θ1 and θ2 are undetermined
parameters. Then, we conduct a grid search for the parameters and compare the sim-
ulated speed to the GPS recorded speed (as shown in Supplementary Fig. 2a). The
parameter set that yields the smallest speed discrepancy is adopted as the drag coeffi-
cients. To enhance model robustness, we train using a diverse set of drag coefficients,
centered around the calibrated values (as depicted in Supplementary Fig. 2b).

Note 2 Temporal gradient decay

Temporal gradient decay is an essential technique to ensure stability and efficiency
in training, especially for long-range sequences. This method manages the accumu-
lation of gradients backpropagated through time, ensuring that the significance of
distant obstacles vanishes over time. We first highlight the challenge posed by gradi-
ent accumulation (refer to Extended Data Fig. 2a,b) and subsequently demonstrate
how temporal gradient decay addresses the issue of exploding gradients (see Extended
Data Fig. 2c). Ultimately, we illustrate how the decayed gradient teaches the agents
to maneuver at the optimal moment.

Extended Data Fig. 2 shows the graphical model of simulation spanning 4
timesteps, with the objective function being evaluated based on the position at t=4.

3



0

1

2

-3.5 -2.5 -1.5 -0.5

Ac
tio

n
gr
ad
ie
nt

Time (s)

w/o gradient decay w/ gradient decay

Sensing range limit

Maneuver windowa

b

Back-propagation

Supplementary Fig. 3: Temporal gradient decay aligns the supervisory sig-
nals with the sensing range. (a) A scenario where the agent approaches an obstacle.
Graph (b) Gradient decay aligns training signals within the sensing range.

For simplicity, we take ∆t = 1 without loss of generality. Extended Data Fig. 2b shows
the backward computation. Here, the positional gradient, denoted as g, is backprop-
agated through the entire computation graph. The numerical integration structure
further leads to a growing gradient signal that ultimately accumulates to the model
parameters. In contrast, when gradient decay is applied during temporal backprop-
agation, the gradients affecting the parameters result from the product of a linearly
increasing term and an exponentially decaying term.

Supplementary Fig. 3 shows the advantage of temporal gradient decay in aligning
supervisory signals with the quadrotor’s sensing range. The blue line in Supplemen-
tary Fig. 3, representing the gradient without temporal gradient decay, displays an
ever-increasing gradient. This misleads the agent with the impractical task of avoiding
obstacles beyond its sensing range. The gradient, after the application of decay, ini-
tially rises and then diminishes to zero as it’s backpropagated over time. This dynamic
achieves a balance, addressing the inherent conflict that earlier maneuvers provide
more significant benefits for obstacle avoidance, yet distant obstacles are often more
challenging to perceive. Thus, the agent is directed to concentrate more on proximate
obstacles that are immediate and more perceptible.

By prioritizing immediate and perceptible obstacles, the training process can con-
verge faster as the training objective becomes more feasible, and the agent receives
more relevant feedback. This method ultimately foresters a more robust navigation
system.

4



Note 3 Depth Image Pre-Processing

For real world deployment, the depth map from the D435 camera is first inverted,
using (·)−1, and standardized. We then downsample the depth image to a resolution
of 32×24 using nearest sampling. Following this, we apply a max-pooling with a 2×2
kernel. This operation captures the nearest point within each 2× 2 grid. This results
in a pooled depth image of size 16 × 12, which is used as input for the network. The
original D435 depth image is captured in 16:9 mode and then cropped to 4:3 to avoid
invalid pixels along the sides.

Supplementary Fig. 4 shows a sequence of inverted D435 depth images and the cor-
responding pooled results during a sample flight. This figure also includes the infrared
grayscale image of the environment for reference.

In
fr
ar
ed

De
pt
h

Po
ol
ed

Supplementary Fig. 4: Depth image sequence during a sample flight, along with
the pooled depth images and infrared grayscale images. See Supplementary Video 8
for the full sequence.

5



Supplementary Figures

k=

ℎ!

CNN

1

+

𝑜"

FC

GRU
ℎ"
FC

action

CNN

2

+

𝑜#

FC

GRU
ℎ#
FC

action

CNN

3

+

𝑜$

FC

GRU
ℎ$
FC

action

…Hidden-
state

Supplementary Fig. 5: Temporal unfolded data flow of our recurrent neural network
architecture. The gated recurrent unit (GRU) [3] maintains and updates a hidden
state (ht) over time as memory.

6



Supplementary Tables

Method Model Inference Time (ms)

Agile [4] MobileNet v3 [5] 15.96
Bhattacharya et al. [6] Custom ViT+LSTM 8.97
Ours Custom CNN+GRU 0.44
Ours (onboard) Custom CNN+GRU 3.74

Supplementary Table 1: Neural network inference times on an AMD
Ryzen 2700X CPU. Onboard data is tested on an Allwinner H616 CPU.
Times are averaged over 1000 samples.

Training Parameter Value

optimizer AdamW
learning rate 0.001
learning rate schedule cosine decay
weight decay 0.01
batch size 64
number of timesteps N 150
∆t 1/15 s
gradient decay rate α 0.92
training iterations 50000

Supplementary Table 2: The hyperpa-
rameters used for training. We add a small
perturbation on the simulation time step
∆t during training.

7



Training Parameter Value

optimizer AdamW
weight decay 0.01
discount factor 0.99
GAE λ 0.95
number of timesteps N 150
∆t 1/15 s
clip range 0.2
entropy coefficient 0.001
parallel environments 256
training iterations 12,500
minibatch size 38,400
mini epochs 5

Supplementary Table 3: Hyperpa-
rameters for the Proximal Policy Opti-
mization (PPO) Algorithm [7].

References

[1] Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: High-Fidelity Visual and Phys-
ical Simulation for Autonomous Vehicles. In: Field and Service Robotics (2017).
https://arxiv.org/abs/1705.05065

[2] Song, Y., Naji, S., Kaufmann, E., Loquercio, A., Scaramuzza, D.: Flightmare: A
flexible quadrotor simulator. In: Conference on Robot Learning, pp. 1147–1157
(2021). PMLR

[3] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

[4] Loquercio, A., Kaufmann, E., Ranftl, R., Müller, M., Koltun, V., Scaramuzza,
D.: Learning high-speed flight in the wild. Science Robotics 6(59), 5810 (2021).
Publisher: American Association for the Advancement of Science

[5] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu,
Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for MobileNetV3.
arXiv preprint arXiv:1905.02244 (2019)

[6] Bhattacharya, A., Rao, N., Parikh, D., Kunapuli, P., Wu, Y., Tao, Y., Matni, N.,
Kumar, V.: Vision transformers for end-to-end vision-based quadrotor obstacle
avoidance. arXiv preprint arXiv:2405.10391 (2024)

[7] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

8

https://arxiv.org/abs/1705.05065

	SpringerNature_NatMachIntell_1048_ESM.pdf
	Calibration and system identification
	Control latency identification
	Air drag identification

	Temporal gradient decay
	Depth Image Pre-Processing




